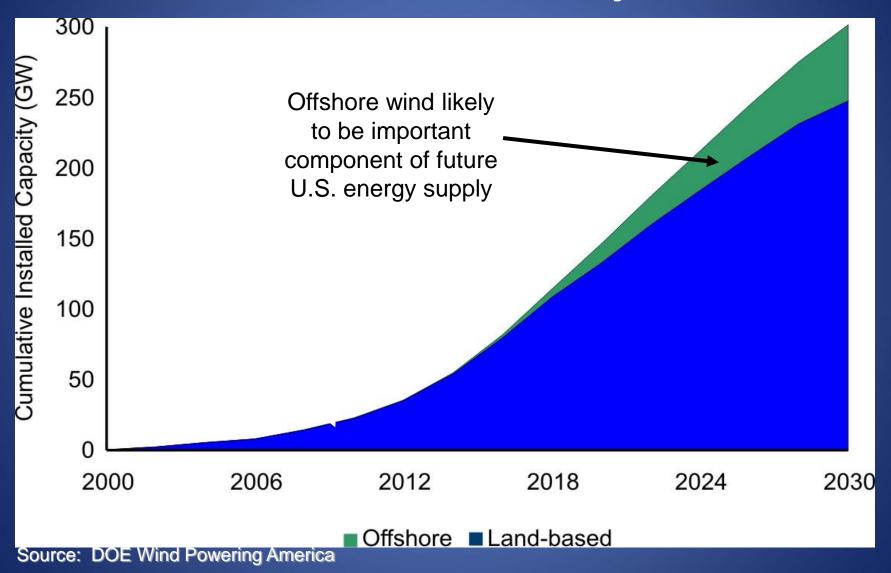


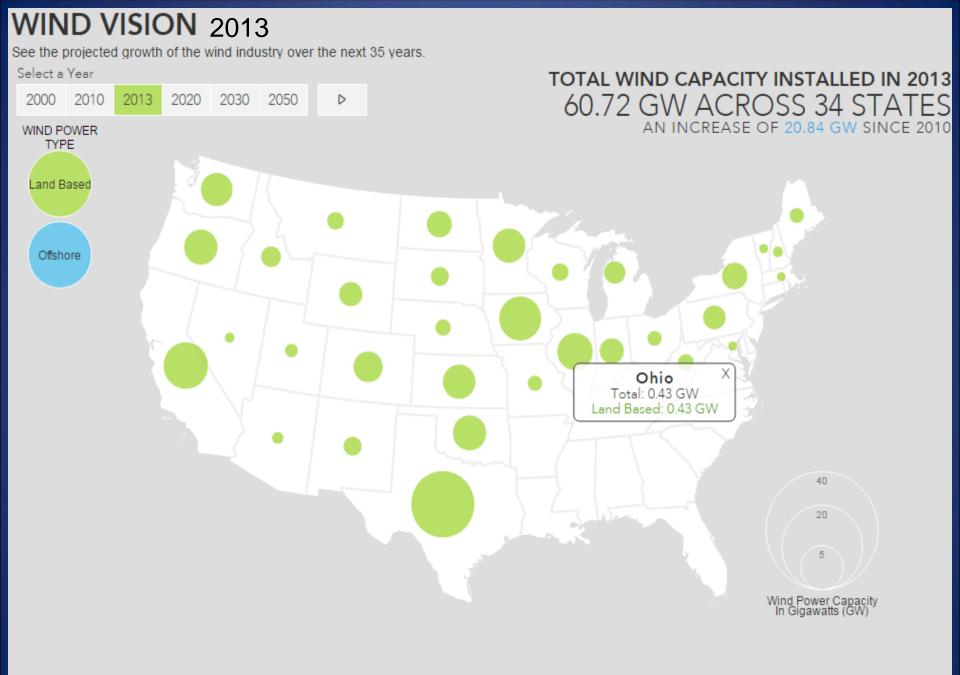
Great Lakes Energy Task Force

A public/private/philanthropic/academic collaboration between:

Great Lakes Energy Task Force

...with extensive private sector participation and interest, including




Feasibility Study

- Several areas of work including:
 - Environmental impact (e.g., avian studies)
 - Legal/regulatory permitting processes
 - Preliminary engineering and interconnection
 - Community acceptance (e.g., aesthetics)
 - Optimal project configuration
 - Preferred ownership/governance structure
 - Economic analysis and finance ability
 - Wind industry interest and willingness to participate
- Key findings:
 - Substantial data compiled on wind, ice, avian and geotechnical factors
 - No technical or environmental "deal-breakers" identified
 - Pilot project would require financial and policy support from public sector
- Available at

http://development.cuyahogacounty.us/en-US/energy-task-force.aspx

20% Wind Scenario by 2030

WIND VISION 2030 See the projected growth of the wind industry over the next 35 years. Select a Year TOTAL WIND CAPACITY PROJECTED IN 2030 2000 2010 2013 2020 2030 2050 D 224.07 GW ACROSS 47 STATES AN INCREASE OF 110,66 GW SINCE 2020 WIND POWER TYPE Land Based Offshore Ohio Total: 7.31 GW Offshore: 1.99 GW 40 20 Wind Power Capacity In Gigawatts (GW)

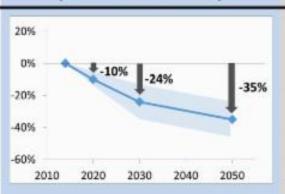
WIND VISION 2050 See the projected growth of the wind industry over the next 35 years. Select a Year TOTAL WIND CAPACITY PROJECTED IN 2050 2000 2010 2013 2020 2030 2050 D 404.25 GW ACROSS 48 STATES AN INCREASE OF 180,15 GW SINCE 2030 WIND POWER TYPE Land Based Offshore Ohio Total: 15.2 GW Offshore: 4.39 GW 40 20 5 Wind Power Capacity In Gigawatts (GW)

ONSHORE (LAND-BASED)

FIXED-BOTTOM OFFSHORE

FLOATING OFFSHORE

LEVELIZED COST OF ENERGY

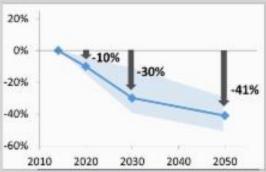

(median estimates for median scenario & 1^{x2}3rd quartile range)

DRIVERS FOR COST REDUCTION IN 2030

(median estimates; median scenario)

TURBINE SIZE IN 2030 (typical projects)

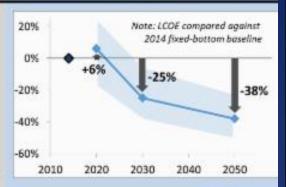
TOP-FIVE IMPACT CATEGORIES



Capacity factor: +10% Project life: +10%

CapEx: -12%
OpEx: -9%
WACC: πο Δ

115 m hub height


135 m rotor diameter

Capacity factor: +4% Project life: +15%

CapEx: -14%
OpEx: -9%
WACC: -10%

4% % .0%

Capacity factor: +9% Project life: +25%

> CapEx: -5% OpEx: -8% WACC: -5%

11 MW 125 m hub height 190 m rotor diameter

- Larger turbine capacity
- · Foundation / support structure design
- · Reduced financing costs
- Economies of scale via project size
- · Component durability / reliability

9 MW 125 m hub height 190 m rotor diameter

- Foundation / support structure design
- · Installation process efficiencies
- Foundation / support manufacturing
- · Economies of scale via project size
- · Installation / transport equipment

Larger rotors, reduced specific power
 Rotor design advancements

3.25 MW

- Taller towers
- Idilet towers
- · Reduced financing costs
- · Component durability / reliability

Lawrence Berkeley National Laboratory

Cost Reduction Potential for Solar and Wind Power, 2015-2025

	Global weighted average data								
	Investment costs (2015 USD/kW)		Percent change	Capacity factor		Percent change ²	LCOE (2015 USD/kWh)		Percent change
	2015	2025		2015	2025		2015	2025	
Solar PV	1 810	790	-57%	18%	19%	8%	0.13	0.06	-59%
Onshore wind	1 560	1 370	-12%	27%	30%	11%	0.07	0.05	-26%
Offshore wind	4 650	3 950	-15%	43%	45%	4%	0.18	0.12	-35%

Source: International Renewable Energy Agency 2016bhttp://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=2733

Cleveland: First in Wind

First wind-powered electricity generator, 1888

Charles Brush Euclid Avenue Cleveland

Prepared by:

A.Steven Dever, Cuyahoga County Representative to the LEEDCo Board of Directors astevendever@aol.com